

AIRS Observed Stratospheric Cooling Rates Compared to Climate Models

2007 AIRS Science Team Meeting March 27, 2007

Dan Feldman ¹, Frank Li ², Duane Waliser ², Yuk Yung ³, Hartmut Aumann ²

- ¹ Department of Environmental Science and Engineering, Caltech
- ² Jet Propulsion Laboratory
- ³ Division of Geological and Planetary Sciences, Caltech

Introduction

- Stratosphere cooling is more rapid than the tropospheric warming due largely to increases of CO₂
- Brewer-Dobson circulation largely determines the O₃ spatial distribution.
 - Result of planetary wave activity
 - Affected by radiative processes including solar heating and infrared cooling
 - Circulation is strengthening with increased CO₂
- Understanding radiative heating/cooling rates is necessary for understanding the radiative control of circulation in the stratosphere.

Cooling Rate Calculations

- Radiative heating/cooling rates directly proportional to net flux divergence in a layer
 - Upwelling surface flux
 - Flux from layers below
 - Flux from layers above
 - Layer emission, transmission
- Knowledge of T, H₂O, O₃ profiles required
- RRTM (Mlawer et al., 1997) utilized for fast RT calculations
 - ±0.1 K/day in trop. relative to line-by-line
 - ±0.3 K/day in strat. Relative to line-by-line

Cooling Rate Error Budget

- Perturbations in T, H₂O, O₃ in the layer of interest affect that layer's cooling rate but also affect cooling in adjacent layers
 - i.e. $\Delta T(z_L) > 0 \rightarrow \Delta \theta'(z_L) > 0$ $\rightarrow \Delta \theta'(z_{L+1}) < 0$ $\rightarrow \Delta \theta'(z_{L+1}) < 0$
- Formal error propagation analysis
 - Uncertainties in T(z), H₂O(z), and O₃(z) propagate into cooling rate profile uncertainty
 - Non-zero covariance in T(z), H₂O(z) and O₃(z) errors must be recognized
- CO₂, O₃ bands contribute substantially to a priori uncertainty

Why 50 mbar

- Small T trend allows for measurement/model intercomparison
- T, O₃ averaging kernels for linear Bayesian retrieval are narrow
 - H₂O ambiguity in AIRS signal at 50-mbar

Cooling rate error at 50 mbar after AIRS measurement ~0.15 K/day, mostly from CO₂, O₃ bands

AIRS: a Tool for Cooling Rate Profile Analysis

- AIRS measurements contain information regarding radiative cooling rates up to 10 mbar
 - Explicit through measurement of several bands:
 - CO₂ v₂
 - Window
 - $O_3 V_3$
 - H₂O v₃
 - Implicit (far-infrared H₂O rotational band)
 - Cooling from stratospheric H₂O not constrained by AIRS measurements
 - See Feldman et al. (2006) for intercomparison of cooling rates derived various measurements.
- Cloud top pressure and temperature and cloud fraction are sufficient to constrain stratospheric cooling rates
- For troposphere and tropopause layer, synergy with other instruments may allow for analysis of cooling rates and comparison with models.

AIRS L3 products at 50-mbar

- AIRS L3 T, H₂O, O₃, CTP, CTT, CLW products utilized (Olsen et al)
 - Several L3 months missing
- Expected features of 50-mbar temperatures and cooling rates derived from AIRS data
 - Cooling rate at 50-mbar follows but is not synced with temp. at 50 mbar

AIRS L3 50-mbar T and θ' Selected Maps

- At 50-mbar cooling-to-space term dominates
- O₃ offsets CO₂ (and H₂O) cooling
 - O₃ profile knowledge necessary for accurate cooling rate determination

50-mbar T and θ ' differences

- AIRS and ERA-40 (Uppala et al) 50-mbar T and θ' agree with some discrepancies in high-latitude winter hemisphere
- AIRS and GISS (Schmidt et al) have substantially more disagreement in T and θ'

Phase (and amplitude) comparison of AIRS L3 with models and reanalysis

<u>Lags</u>

ERA-40: 0.3 months

GISS: 1.3 CM2: 0.5

- Phase of 50-mbar signal:
 - the mean time each year when the signal crosses the mid-point between the maximum and the minimum on up-swing.

Conclusions

- Stratospheric T and θ' are necessary for determining stratospheric circulation
- AIRS measurements capture stratospheric cooling rates to within 0.15 K/day (within stated computational accuracy of band-model).
- Comparison between 50-mbar temperature and cooling rates from AIRS and models
 - AIRS data suggest phase of 50-mbar temperature in models lagging
 - Models predict warmer low-latitude, colder high-latitude midstratosphere than AIRS L3
 - Model cooling rates follow 50-mbar temperature deviation but hemispheric biases present.
- For a longer discussion of using thermal IR sounders for cooling rate analysis, look for Feldman et al (JGR in prep)

Acknowledgements

- NASA Earth Systems' Science Fellowship
 - Grant #: NNG05GP90H
- Yuk Yung's IR radiation group
- Kuo-Nan Liou (UCLA)
- Kuai Le (Caltech)

References

- Anderson, J.L. et al. (2004) The New GFDL Global Atmosphere and Land Model AM2-LM2: Evaluation with Prescribed SST Simulations, *Journal of Climate*, 17: 4641-4673.
- Clough, S.A., and M.J. Iacono (1995). Line-by-line calculation of atmospheric fluxes and cooling rates 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. *Journal of Geophysical Research*, 100(D8): 16519-16535.
- Feldman, D.R., K.N. Liou et al. (2006). Direct retrieval of stratospheric CO₂ infrared cooling rate profiles from AIRS data, *Geophysical Research Letters*, 33: 2005GL024680.
- Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, 1950–2003, *Journal of Geophysical Research*, 112, XXXXXX, doi:10.1029/2006JD007485.
- Holton, J.R., P.H. Haynes, et al. (1995), Stratosphere-Troposphere Exchange, *Review of Geophysics*, 33(4): 403-439.
- McClatchey, R.A., Fenn, R.W., Selby, J.E.A., Volz, F.E., Garing, J.S. (1971). "Optical properties of the atmosphere." ARCRL-71-0279, Air Force Geophysics Lab, Bedford, MA.
- Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997). "RRTM, a validated correlated-k model for the longwave." *Journal of Geophysical Research*. 102: 16,663-16,682.
- Olsen, E.T. et al. (2005). AIRS/AMSU/HSB Version 4.0 Data Release User Guide. http://daac.gsfc.nasa.gov/AIRS/documentation/v4_docs/V4_Data_Release_UG.pdf
- Rodgers, C. D. (2000). Inverse Methods for Atmospheric Sounding: Theory and Practice. London, World Scientific.
- Schmidt, G.A. et al. (2006). Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. *Journal of Climate*, 19(2): 153-192.
- Uppala, S.M., Kållberg, P.W., Simmons, A.J., et al. (2005): The ERA-40 re-analysis. *Quarterly Journal of the Royal Meteorological Society*, 131, 2961-3012.

Cooling Rate Calculations

 Radiative heating/cooling rates directly proportional to net flux divergence in layer

- Knowledge of T, H₂O, O₃ profile required
- RRTM utilized for fast RT calculations
 - ±0.1 K/day in trop. relative to LBLRTM
 - ±0.3 K/day in strat. Relative to LBLRTM

Cooling Rate Error Budget

 Perturbations in T, H₂O, O₃ in the layer of interest affect that layer's cooling rate but also affect cooling in adjacent layers

- i.e.
$$\Delta T(z_L) > 0 \rightarrow \Delta \theta(z_L) > 0$$

 $\rightarrow \Delta \theta(z_{L+1}) < 0$
 $\rightarrow \Delta \theta(z_{L+1}) < 0$

Formal error propagation analysis

$$\operatorname{var}\left[\Delta\dot{\theta}(z)\right] = \begin{cases} \sum_{i=1}^{n} \left[\frac{\partial\dot{\theta}(z)}{\partial x_{i}}\right]^{2} \operatorname{var}(x_{i}) + \\ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial\dot{\theta}(z)}{\partial x_{i}} \frac{\partial\dot{\theta}(z)}{\partial x_{j}} \operatorname{cov}(x_{i}, x_{j}) \end{cases}$$

$$2\operatorname{cov}\left[\dot{\theta}(z_{i}),\dot{\theta}(z_{j})\right] = \begin{cases} \operatorname{var}\left[\dot{\theta}(z_{i}) + \dot{\theta}(z_{j})\right] - \\ \operatorname{var}\left[\dot{\theta}(z_{i})\right] - \operatorname{var}\left[\dot{\theta}(z_{j})\right] \end{cases}$$

 CO₂, O₃ bands contribute substantially to a priori uncertainty

Phase comparisons for other latitude bands

Lags: ERA-40: GISS: CM2:

Lags: ERA-40: GISS:

